Numerical Methods

<table>
<thead>
<tr>
<th>Module Title</th>
<th>Numerical Methods</th>
</tr>
</thead>
<tbody>
<tr>
<td>Level</td>
<td>4</td>
</tr>
<tr>
<td>Reference No.</td>
<td>EAX_4_219/MTHE02I03</td>
</tr>
<tr>
<td>Credit Value</td>
<td>10 credit points</td>
</tr>
</tbody>
</table>

Student Study Hours

- Contact hour: 22 lectures + 11 Tutors + 11 practical computer sessions
- Student managed learning hours: 100

Pre-requisite learning

-

Co-requisites

-

Excluded combinations

-

Module co-ordinator

Dr. Gamal Nashed
Gamal.nashed@bue.edu.eg

Faculty/Department

Engineering/Petroleum Engineering

Short Description

numerical, mathematics, programming.

Aims

are to ensure that all students will have a basic knowledge and understanding of how to set up and solve mathematical problems numerically.

Learning Outcomes

Knowledge and Understanding:

On completion of this module students should be able to demonstrate knowledge and understanding of:

1. understand how mathematical models can be solved using computer simulations;
2. understand limits of numerical methods and their implementation on computer systems; understand sources of numerical error and be able to estimate its effect on a given algorithm;

Intellectual Skills:

On completion of this module students should be able to demonstrate ability in:

3. explaining the mathematical concepts for each topic in this module using specialist vocabulary; follow, replicate and explain simple proofs from the lecture notes;
4. selecting suitable numerical method for solving eng math problem

Practical Skills:

On completion of this module students should be able to demonstrate ability in:

5. mathematically solve practical engineering problems using computational methods;
6. apply different numerical techniques for solving partial differential equations.

Transferable Skills:

On completion of this module students should be able to demonstrate ability in:

7. write simple computer programmes in order to solve mathematical problems;
8. solve PDF equations for eng purposes.
Employability

The development of one or more of the top engineering skills, namely problem solving, communication, management and environment and economics, is the priority of this module.

Teaching and learning pattern

1. 22, 1 hr lectures. This method informs learning outcomes 1, 2, 3.
2. 11, 1 hr tutorials. This method informs learning outcomes 2, 4, 5, 6, 7, 8.
3. 11, 1 hr practical computer sessions. This method informs learning outcomes 4, 5, 6.

Indicative content

Types of errors; algorithms and convergence; solution of nonlinear equations in one variable using bisection and Newton-Raphson; solution of linear systems using iteration methods, the Jacobi, and the Gauss-seidel; interpolation and polynomial approximation using Lagrange, Newton divided differences, Newton forward and backward, central differences; least square regression, numerical integration using trapezoidal and Simpson, numerical solution of ordinary differential equations using Euler's method, Runge-Kutta, and multi-step methods.

Assessment

<table>
<thead>
<tr>
<th>Elements & weightings</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination</td>
<td>A 180-minute unseen written examination assesses learning outcomes 1, 2, 3. 70%</td>
</tr>
<tr>
<td>Course Work</td>
<td>10% one set of assessed tutorial problems to assess learning outcomes 1, 2, 4, 5, 6 and 20% a computer-based project assesses learning outcomes 4, 5, 6. 30%</td>
</tr>
</tbody>
</table>

Students must achieve (i) 40% for the total module mark and (ii) at least 30% in the unseen examination and the course work in order to achieve an overall passing mark for this module.

Indicative Sources