1.0 THE FACULTY OF ENGINEERING

1.1 Undergraduate Programmes

The Engineering undergraduate programmes consist of a Preparatory Year followed by four years in one of six programmes, each leads to a Bachelor of Science Degree.

- BSc (Hons) Architectural Engineering*
- BSc (Hons) Chemical Engineering**
- BSc (Hons) Civil Engineering*
- BSc (Hons) Electrical & Communications Engineering*
- BSc (Hons) Mechanical Engineering*
- BSc (Hons) Petroleum Engineering & Gas Technology**

** Validated by London South Bank University

Each Engineering undergraduate programme consists of four years, which follow the Preparatory Year. Upon successful completion of the Preparatory Year, students are admitted in a programme of their choice provided that they satisfy the programme’s requirements. These include a maximum number of students per programme in addition to other requirements which are specified by the Department.

The Preparatory Year curriculum provides a foundation for students entering Engineering Degree Programmes. It aims to develop students’ knowledge of Engineering so that by the end of the Programme students are able to choose their degree specialisation. The Preparatory Year Programme spans two semesters and covers the following modules: Engineering Mechanics, Engineering Drawing, Chemistry, Engineering Production, Mathematics and Physics. Additionally, a module in Engineering Ethics & Human Rights is offered as well as a module in English. The latter is designed to develop students’ English Language and study skills and enable them to make a successful transition from school to university studies.

1.2 Why study in the Faculty of Engineering?

The Faculty of Engineering at the British University in Egypt is an effective and modern Faculty and offers the most diverse range of specialisms in Egypt. The overall mission of the Faculty is to provide Egypt, and the Middle East, with a British style of education of the highest quality, and to supply graduates that feed and stimulate industry and commercial activities.

The Faculty undertakes high quality academic and applied research of relevance to industry and the economy of Egypt and the Middle East. The curricula offered in the Engineering programme emphasize both theoretical and practical aspects including design and implementation. It provides students with the theoretical and practical skills that industry and employers require. The Faculty of Engineering maintains close partnerships with industry in Egypt and beyond which substantially benefit the students.

Engineering students study in an environment that encourages diversity and innovation. Staff are not just academic experts in their fields but often have ‘real life’ practical experience, which they bring to their subjects, as well as close contacts with the ‘world of work’. In this way students in the Faculty of Engineering learn not just what to think but how to think.
1.0 THE FACULTY OF ENGINEERING

1.3 BSc (Hons) Architectural Engineering

1.3.1 Why study Architectural Engineering at the BUE?
Upon successful completion of the Preparatory Year, and satisfying entry requirements of the Architectural Engineering programme, students admitted to this department will be enrolled for four years.

The Department of Architectural Engineering offers students a distinct programme because:
- The programme is fully validated by Loughborough University, UK.
- It provides state-of-the-art equipment and resources necessary to the study of architecture.
- It exposes students to international experience through participation in international schools of architecture in competitions and summer workshops.
- It exposes students to a diversity of professional expertise.
- It is based on self-learning and research-based academic teaching.
- It is closely linked to the market needs.
- It establishes close connection between students and professional practice.

1.3.2 What will I study?
Upon successful completion of the Preparatory Year, and satisfying entry requirements of the Architectural Engineering programme, students admitted to this department will be enrolled for four years.

Degree Year 1
In this year, students study the basic concepts representing the core threads of the programme; mainly Architectural Graphics, Design, Construction Technology, Introduction to History and Theory of Architectural Design, and Basics of Visual Design. Students learn basic knowledge regarding Structural Engineering including Structural Design, Surveying, Construction Materials and Reinforced Concrete and Steel Design. In addition, students acquire essential skills in technical report writing and data presentation, skills which will help students in later study years.

Degree Year 2
Students develop their knowledge, understanding and skills in Architectural Design and Building Construction, Visual Design and History of Architecture. They are introduced to Urban Development, Building Services, CAD Applications and Contract Administration. In addition, students begin to learn the essential key issues of management and its implementation in their study area. By the end of this year, students should have acquired the necessary knowledge and understanding of basic architecture engineering topics.

Degree Year 3
Students develop their skills in Architectural Design and are introduced to Working Drawing, Theory of Architecture, and Building Services. They learn key information about Urban Planning and Interior Design. They are introduced to the key issues of Project Management and Construction Economics. More skills in 3D Computer Graphics are acquired. By the end of this year, students have developed their skills ready to undertake their graduation project in the final year.

Degree Year 4
Students continue to develop their skills in Architecture Design and are introduced to Urban Design. They develop knowledge and skills about Sustainability of the Built Environment. They apply their knowledge, understanding and skills in two main pieces of work: a research project and a design project. In addition, they have a choice of three optional modules to strengthen their fields of interest in: Construction Management, Lean Construction, Management Information Systems, Geographic Information Systems, Landscape Architecture, Climatic Design or Interior Design. By the end of this year, students are ready to join the professional practice in the Architectural Engineering field.

1.3.3 How will I learn and be assessed?
Teaching involves a mix of lectures, tutorials, group work, private study and design projects. Assessment involves submitting coursework, presentations and projects. Students are encouraged to participate in local and international competitions. Students are also encouraged to obtain internships.

1.3.4 What career and further education opportunities are open to me when I graduate?
Graduates of the programme can join one of the following professional fields:
- Architecture Design
- Interior Design
- Urban Design
- Landscape Architecture
- Project Management
- Construction Supervision and Management
1.4.2 What will I study?

Upon successful completion of the Preparatory Year, and satisfying entry requirements of the Chemical Engineering programme, students admitted to this department will be enrolled for four years.

Degree Year 1

Students study basic modules including Maths, Physics and Chemistry to gain a foundation for future problem analysis. In addition, they cover modules related to the basics of Chemical Engineering, Material Engineering and Thermodynamics; these modules help widen the knowledge of students to support their future development as Chemical Engineers. The modules provide the capabilities to acquire the underpinning knowledge and analytical skills for process design and engineering.

Degree Year 2

The modules studied provide the focus to enable students to become a Chemical Engineer. Modules include concepts of Mass and Energy Balance which are the core of Chemical Engineering applications, as well as Polymer Basics and Fluid and Momentum Transfer to deal with transportation of liquids and gasses. At the end of this year, students will be able to analyse basic Chemical Engineering problems and applications and complete calculations for materials and energy. In addition they will be prepared for modules on Process Design and Economics.

Degree Year 3

Students focus on the fundamentals of process design, experimentations and methods of calculations and analysis of chemical industries. Students study methods of the design of mass transfer operation and equipment, heat transfer equipment and general unit operations. They learn how to design a complete chemical plant in terms of overall performance and a whole system. Additional modules focus on, chemical reactor design, design of equipment, the chemical function of the process, vessel design for material and mechanical design, applications of organic technologies, safety, and process simulation.

Degree Year 4

The final year aims to provide students with a solid background, knowledge and practical skills in one of three specialism, Petrochemicals, Environmental Engineering or Pharmaceutical Engineering. Students select a specialism according to the students’ future career plans:

(i) Environmental Engineering
(ii) Petrochemical Engineering
(iii) Pharmaceutical Engineering

A specialism will be offered in Year 4 only if the number of students reaches a critical mass.

In each specialism students focus on modules which provide them with the required in-depth knowledge and skills. Also, students have the opportunity to complete a research project and design project to apply their knowledge and acquired skills to achieve a certain objective for a given local problem. At the end of this year students are expected to be well qualified chemical engineers with a strong background in one area of specialism.

1.4.3 How will I learn and be assessed?

Teaching is given in combinations of lectures, tutorials, experiment, group and individual work. Students are often given time for private studies to allow greater analysis and application of learning. Presentations are also required to give students the confidence in expressing themselves in a professional way and to ensure the successful delivery of ideas.

Assessments are performed according to module specifications; assessments will include submitted coursework, exams, presentations, and design and research projects.

In the second and third years, students are expected to do a summer training programme to ensure hands on knowledge and to gain greater professional skills and an understanding of engineering ethics. Training can be locally in Egypt or it can be done in an international setting, including in Spain, South Africa or Bulgaria.

1.4.4 What career and further education opportunities are open to me when I graduate?

The job market for Chemical Engineers is very rich. Chemical Engineers can pursue a career in one of the following areas: Industry, Academia, Consulting, Process Design, Operation and Production, Research and Development, Management, Control, or as an Environmental Advisor.

Industries in the job market are varied, including chemical industries, water treatment plants, power stations, pharmaceutical companies, petroleum refining and gas technologies, cement industries, polymer and plastics industries, painting industries, petrochemical industries, fertilizer industry, paper industries, renewable energy industries, food industries.
1.5.1 Why study Civil Engineering at the BUE?

Upon successful completion of the Preparatory Year, and satisfying entry requirements of the Civil Engineering programme, students admitted to this department will be enrolled for four years.

The Civil Engineering Department at BUE graduates general Civil Engineers with a specialisation in one of six major specialisms. Specialisation is created through three parallel paths. The first comprises two industrial placements in the summer of Years Two and Three. The second is 40 credits worth of project effort divided into 20 credits of an individual research project and 20 credits of a group design project. Finally, students are offered 20 credits of optional modules that support the projects s/he has selected.

The employed specialisation scheme allows students to gain a multifaceted expertise and knowledge. The knowledge gained is practical since their industrial training is in the selected specialism; it is theoretical with two modules enhancing the theoretical background; it is research informed since the design project is informed by findings reached in the research project; and finally it is applied since students employ all their knowledge in an integrated design project.

1.5.2 What will I study?

Upon successful completion of the Preparatory Year, and satisfying entry requirements of the Civil Engineering programme, students admitted to this department will be enrolled for four years.

Degree Year 1

Students acquire guidance and practice in the basic skills of drawing, especially those needed for professional construction and civil engineering work. An introduction to the technological aspects, construction sequence, health and safety issues, and management procedures of simple buildings is also provided. Material science relevant to civil engineers and properties of construction materials are also introduced. Students also acquire an understanding of surveying instrumentation together with observation techniques and limitations. This is accompanied by taking the basic concepts of soil mechanics, the fundamental principles of engineering geology, and fluid mechanics. Finally, the year one civil engineering student is introduced to basic research and communications skills.

Degree Year 2

Students start to investigate structural responses with respect to stresses and strains. Consequently, programming techniques and computer applications in civil engineering are provided in addition to basic knowledge required to employ CAD tools in the design. Construction management is also studied to provide students with necessary knowledge of construction equipment, productivity, and impact on the construction planning schemes. Students continue to explore basics of water engineering, behaviour of construction materials, geotechnical engineering and geomatics. Finally, students start acquiring basic design skills of steel and concrete elements.

Degree Year 3

Students will learn the most important aspects of design, construction and maintenance of water distribution networks, drainage and sewerage systems with particular attention to hydraulic structures and hydraulic equipment. Students also get the chance to use the knowledge gained in surveying and geotechnical engineering in field based practical applications. Advanced design of steel and concrete structures is covered in addition to water and wastewater treatment, transportation systems. Analytical techniques required for the analysis of elastic indeterminate structures, are also provided. Finally, different types of construction contracts are introduced.

Degree Year 4

Students are required to accumulate all their gained knowledge through a graduation project in one of the main areas of civil engineering, i.e. structural engineering, water engineering, construction management, environmental civil engineering and transportation engineering. The project comprises a research component in addition to a design component. The main idea is to provide means of concentration within civil engineering by implementing acquired skills in research, analysis and design. In addition, two optional modules are required in order to establish the necessary theoretical background required for the projects. Other advanced modules are also considered in geoinformatics, foundations, water structures and advanced concrete design.
1.0 THE FACULTY OF ENGINEERING

1.6 BSc (Hons) Construction Engineering and Management

Degree Year 3

Students will learn the most important aspects of construction planning and scheduling and management information systems. They will also learn how to study the economics of the project and its construction phases with the necessary financial management modules. Project management and contract procedures will also be taught to enhance student ability to manage projects successfully and professionally. Additional civil engineering aspects will be taught as well. This includes advanced design of foundation engineering, reinforced concrete in addition to water and wastewater treatment, transportation systems. Analytical techniques required for the analysis of elastic indeterminate structures, are also provided. Irrigation works design will also be taught to complement the whole spectrum of civil engineering and construction management in different civil fields of application.

1.7 BSc (Hons) Electrical and Communications Engineering

1.7.1 Why study Electrical and Communications Engineering at the BUE?

Upon successful completion of the Preparatory Year, and satisfying entry requirements of the Electrical & Communications Engineering programme, students admitted to this department will be enrolled for four years.

The discipline of Electronics is experiencing a very exciting time in Egypt and the world:

- The change to all-digital TV is releasing bandwidth for new communication applications.
- Wave-Division Multiplexing has increased the bandwidth of optical fibres by 1000 times in the past year, so we will soon all be able to exchange real-time video applications (including multi-player games).
- Development of ‘meta-materials’ enables electro-magnetic waves to be focussed by antennas or bent to make objects disappear.

These areas are examined in depth by the Programme which provides our graduates with the knowledge and skills required in today’s world for a successful career.

1.7.2 What will I study?

Upon successful completion of the Preparatory Year, and satisfying entry requirements of the Electrical & Communications Engineering programme, students admitted to this department will be enrolled for four years.

Degree Year 1

This year has a three-fold objective. Firstly, Students continue to develop knowledge and the required problem solving skills in Mathematics modules that are essential for their study. Students also study the basic concepts of the core themes of the Programme: Electric and Electronic Circuits, Electromagnetic Fields, and Signals & Systems in order to learn the pre-requisite background for Communication Technologies. Finally, Students acquire skills in technical report writing and data presentation. These are essential skills for future careers and life-long learning. In engineering, technical writing is the gateway to professional success and this provides you with the basis for future professional success.

1.7.3 How will I learn and be assessed?

Teaching involves a mix of lectures, tutorials, group work, private study and practical activities. Assessment involves submitting coursework, sitting examinations and projects. Students are also encouraged to obtain internships. Teaching involves a mix of lectures, tutorials, group work, private study and practical activities. We particularly favour Problem-Based Learning where students are presented with a “problem”. It is the responsibility of the student or group to question colleagues, friends, family, Teaching Assistants, and academic staff, and search the Library for academic references, to obtain assistance and an appropriate “solution”.

Assessment involves submitting coursework, making presentations, working on mini-projects and sitting (unseen) examinations. The criteria for expected outcomes of these assessments provided. We particularly emphasise feedback to the student for future guidance about past performance by personal interaction, example correct solutions and references, to obtain assistance and an appropriate “solution”.

1.7.4 What career and further education opportunities are open to me when I graduate?

On graduation, you will have up-to-date knowledge of the latest developments in Electronics and Communication and there are many career opportunities open to you. You may have the choice of a paid job career in industry or you may have an appetite for further education at Master or PhD level.

1.0 THE FACULTY OF ENGINEERING

1.7 BSc (Hons) Electrical and Communications Engineering

Degree Year 2

Students’ knowledge and skills are developed to support their transition and to enable them to apply basic concepts to fundamental ideas in Electronic Engineering. The nature of electronic materials is explored. The link between Physics and Applied Engineering is developed using models of Silicon pn-Junctions and Metal-Oxide Semiconductor, MOS Transistors. These ideas are applied to practical electronic transistor circuits: both analogue and digital circuit applications are used to provide examples of fundamental theories and technologies used in communication systems. Study of digital design leads to an exploration of the higher level systems that are required for the critical examination of the architecture of computers. To support their professional development students are introduced to concepts of Project Management.

Degree Year 3

In this year, students’ knowledge and understanding of digital electronic communication is developed and concepts covered in depth. Digital electronic communication concepts are explored. Key concepts include Orthogonal Frequency-Division Multiplexing (OFDM) which allows Web information to be sent at 2 Mbits per second down a telephone wire that was designed to have a maximum data rate of 1/100th. In addition, Digital TV is investigated. Engineering Software is used by students to design, build and apply mini-projects on ‘e-learning’ that are used by subsequent year’s students.

Degree Year 4

The Final Year is challenging and exciting. Students pursue projects of their own choice with a research and a development aspect. In Semester 1, four modules are compulsory: Very Large Scale Integrated Circuits, Communication Networks, Microwave and Antennas. In Semester 2 only two modules are compulsory: Optical Systems and Electro-Magnetic Compatibility. For the remaining two modules, there is a broad choice of topics Real-Time Software Engineering, Embedded Systems, Opto-Electronics, Wireless Technology, Wireless Sensors are currently offered. Problem-Based Learning is used to enable students to learn how to build and mount software ‘apps’ of their own choosing on mobile telephones. The latest developments in mobile telephone networks, such as ‘Fourth Generation, 4-G’ mobiles and optical-fibre communication are examined in theory and practice.
1.0 THE FACULTY OF ENGINEERING
1.8 BSc (Hons) Mechanical Engineering

1.8.1 Why study Mechanical Engineering at the BUE?
Upon successful completion of the Preparatory Year, and satisfying entry requirements of the Mechanical Engineering programme, students admitted to this department will be enrolled for four years.

The Mechanical Engineering Department graduates general Mechanical Engineers with possible concentration in one of the following specialisations: Production & Design, Materials & Manufacturing, Power & Energy, Automotive & Aeronautical, and Mechatronics. The concentration is achieved in the last year through 5 optional modules and two graduation projects. However, the student may decide to take a mix of optional modules in different areas.

The strong academic background is supported by seven modern laboratories and two machine shops containing state-of-the-art equipment and resources necessary to gain hands-on experience in mechanical engineering. Moreover, students gain practical experience through two industrial training sessions during the summers of second and third years.

The mechanical engineering programme is fully validated by Loughborough University, UK.

The Mechanical Engineering Department has three student organisations in which students participate in social, sports, and other extra-curricula activities. In the last three years, Mechanical Engineering students participated in international competitions and won six prizes in USA, Jordan, and Lebanon.

1.8.2 What will I study?
Upon successful completion of the Preparatory Year, and satisfying entry requirements of the Mechanical Engineering programme, students admitted to this department will be enrolled for four years.

Degree Year 1
Mechanical Engineering Students will enhance their basic knowledge of Mechanical Engineering Fundamentals, and consolidate their skills through studying 11 compulsory modules distributed over two semesters, namely, Calculus, Modern Physics, Rigid Body Mechanics, Introduction to Materials Science & Engineering, Mechanical Drawing & Tolerancing, Foundations of Electrical Engineering, Production Technology (2), Thermo-Fluid Mechanics, Kinematics of Mechanisms, Stress Analysis, and Differential Equations.

Degree Year 2
Students will study 10 modules over two semesters. Some of these modules are designed to consolidate students’ understanding of mechanical concepts, principles, and skills while others cover simple industrial applications. These modules are: Thermodynamics, Engineering Probability & Statistics, Fluid Mechanics, Quality Control and Technical Report Writing. In addition, students study Machine Design, Dynamics of Machinery, Material Properties & Characterisation, Electrical Machines & Control, Production Technology (3), and Numerical Methods.

Degree Year 3
Students study an optional module plus a set of nine compulsory modules distributed over two semesters. Most modules concentrate on design of systems and/or components for real-life engineering applications. Throughout this year students will enhance their knowledge on how to apply Mechanical Engineering fundamentals into different industrial systems.

Degree Year 4
In the fourth year, the Mechanical Engineering Programme emphasises industrial applications as well as the development of research skills. Students may choose to take modules in different fields or select one of the following focus areas: Mechatronics, Materials, Design & Production, Power & Energy, and Automotive & Aeronautics. Students will be guided to choose four optional modules and two graduation projects in these areas.

1.0 THE FACULTY OF ENGINEERING
1.8 BSc (Hons) Mechanical Engineering

1.8.3 How will I learn and be assessed?
Teaching involves a mix of lectures, tutorials, laboratory sessions, group work, private study and practical activities. Assessment involves submitting coursework and projects (reports and presentations), and sitting exams. Students are also required to conduct two 4 week industrial internships during the summers of Degree Years 2 and 3.

1.8.4 What career and further education opportunities are open to me when I graduate?
After graduation, students have job opportunities including the design, manufacture, and maintenance of systems and equipment in many fields including:

Students who are interested in pursuing their studies may register for MSc programmes at the BUE (Renewable Energy or Advanced Materials) or any national university. Also, students can continue their postgraduate studies abroad.
1.0 THE FACULTY OF ENGINEERING

1.9 BSc (Hons) Petroleum Engineering and Gas Technology

1.9.1 Why study Petroleum Engineering and Gas Technology at the BUE?

Upon successful completion of the Preparatory Year, and satisfying entry requirements of the Petroleum Engineering & Gas Technology programme, students admitted to this department will be enrolled for four years.

The Petroleum Engineering and Gas Technology Department provides an honours degree in the field of Petroleum Engineering and Natural Gas Technology. Students graduating from the British University in Egypt are highly skilled in the E&P industry locally and internationally. BUE’s graduates typically work in various disciplines in industry including: drilling engineering, reservoir engineering, production engineering, production technology, and formation evaluation engineering. The Petroleum Engineering and Gas Technology Department is fully equipped with a range of well equipped laboratories.

1.9.2 What will I study?

Upon successful completion of the Preparatory Year, and satisfying entry requirements of the Petroleum Engineering and Gas Technology programme, students admitted to this department will be enrolled for four years.

Degree Year 1

Students will develop knowledge, understanding and problem solving skills in basic science modules (Mathematics, Physics and Chemistry) that are essential for their study in the PEGT Programme. In addition they will study the Basic Engineering Sciences (Materials Science, Thermodynamics, Fluid Mechanics and Structural and Stress Analysis) which are a pre-requisite for understanding Petroleum Engineering modules. Furthermore, they will study the basic concepts of Petroleum Engineering and Geological Principles of Petroleum Exploration. Students also acquire essential required skills in computer programming and technical report writing.

Degree Year 2

Students continue to consolidate their knowledge, understanding and problem solving skills in Basic Sciences and Basic Engineering Sciences including Engineering Probability and Statistics, Numerical Methods, Organic and Analytical Chemistry, Fundamentals of Heat and Mass Transfer, and Machine Design. Students also acquire an understanding of surveying instrumentation together with observation techniques and limitations. In addition students study the basic concepts representing the core threads of the Programme, namely Drilling Engineering and Drilling Fluids, Reservoir Rock and Fluid Properties and laboratory work.

Degree Year 3

Students focus on the most important aspects of Well Logging, Petroleum and Natural Gas Exploration, Reservoir Engineering, Reservoir Modelling and Simulation, Well Testing, Petroleum Production Engineering, and Equipment. Corrosion in the Oil and Gas Industry. In addition, students are introduced to key concepts of Petroleum Economics and Legislation.

Students begin to learn the essential key issues of Engineering Project Management and its implementation in their study area. Furthermore, through field course practical modules, students acquire essential skills required for the production of topographical, geological and structural maps.

Degree Year 4

Students focus on Advanced Reservoir Engineering, Reservoir Management Surface Production Facilities, Enhanced Hydrocarbon Recovery, and Gas Condensate Reservoir Engineering. Students are required to accumulate all their gained knowledge through a graduation project in one of the main areas of Petroleum Engineering, Exploration, Drilling, Production, Storage and Transportation, Operation and Processing, or Enhanced Hydrocarbon Recovery. The project comprises a research component in addition to a design component with the main aim to provide students the opportunity to implement the acquired skills in research, analysis and design. In addition, two optional modules are required in order to establish the necessary theoretical background required for the projects.

1.9.3 How will I learn and be assessed?

Teaching involves a mix of lectures, tutorials, group work, self study, practical and field activities. A variety of assessment methods involves submission of coursework, problem sets, in-class group assessments, sitting exams, presentations and projects. The Programme emphasises hands-on practical and field work to enhance the student’s appreciation and understanding of technical and theoretical concepts. Students are also encouraged to engage in two industrial internships in the summer of Years Two and Three which expose them to environments of real petroleum projects. The Programme also enhances research and communication skills of its graduates through a variety of research assignments.

1.9.4 What career and further education opportunities are open to me when I graduate?

Petroleum Engineering provides career opportunities in the following fields in national and international companies:

- Petroleum exploration and drilling of oil, gas and water wells in service, joint ventures, and operating companies
- Petroleum (oil and gas) production operations
- Petroleum Reservoir Engineering
- Petroleum research exploration and production disciplines in private, government agencies, universities and national or international companies
- Well services activities in oil services companies
- Safety, environmental and training sectors of oil companies
What our graduates say

“Learn how to think not what to think.” When I first heard those words they did not make sense, but after five years at the BUE they finally do!

Studying at the BUE was not easy, it was challenging and at times difficult, but it was also enjoyable! Learning how to think and analyse has been the key to my success. It has taught me how to deal with problems, how to organise my thoughts and my time. BUE gave me a fully rounded educational experience.

Before I joined Orange I had been to a number of interviews, and it became clear that knowledge about quantum physics and microwave were not the only elements that employers are looking for, but rather the ability to organise, multitask and manage time effectively. Learning how to think and not just what to think, helped me to succeed in obtaining a career in my chosen field.”

Mohamed El Emary, Extended Fault Management Engineer

“One of the several things that helped me develop during my five years at the BUE was teamwork. Today, I work in a place where teamwork is crucial to get quality work done. Diversity, along with teamwork, has helped me develop several skills including communicating with different people from different cultures and backgrounds. This in return has improved my social and critical thinking skills, which has played a major role in helping me reach where I am today.”

Youmna Hamza, Wireless Field Engineer, Schlumberger

How to apply for a programme in the Faculty of Engineering

(i) Read the admissions section in our general booklet. This can also be downloaded at www.bue.edu.eg

(ii) Submit an application online at www.bue.edu.eg

(iii) Call the BUE Hotline and speak to a member of staff in the Student Affairs Department in you require further information - 19(BUE) 19283

When to apply:

(i) The early admissions period begins in January of each academic year.

(ii) Applicants are encouraged to apply early in order to secure a place in their chosen programme of study.

(iii) Once programmes are full the applicants will be placed on a waiting list.