New Energy Efficient Redesign of an Existing Crude Oil Distillation Unit

Mamdouh Gadalla ¹
Dina Ahmed ¹, Fatma Ashour ², Hemdan Noureldine ³

¹ Chemical Engineering Dept., The British University in Egypt
² Chemical Engineering Dept., Cairo University
³ MIDOR
Outlines

- Introduction
- Energy Efficient Distillations
- Motivation and Challenging Problems
- New Retrofit Approach for Refinery Distillation Units
- Case Study
- Results and Discussion
- Conclusions and Future Work
Introduction

- Energy is a fundamental driver of economic growth
- Distillation industry contributes significantly to operation costs and is environmentally challenging
- Crude distillation is energy intensive; it consumes approximately an equivalent of 2% of the crude oil processed
- Building new refinery units is very costly
 - Therefore, many retrofit projects on existing installations are considered to increase the production capacity, improve profit and minimise the energy consumption

i.e. energy is expensive and its efficiency is very low for typical distillations
Energy Efficient Distillations

Simple Column

Column Sequence

Divided-wall Column

Heat Pump

iHIDiC

Progressive Distillation
Motivation and Challenges

- Very complex structure
- Many products
- Interactions between units
- Energy intensive process
- Expensive to modify
- Environmentally harmful
- Economically challenged
- Tedious to model and simulate
Motivation and Challenges

Refineries aim to reuse existing installations for:

- Processing more throughput
- Saving energy
- Processing new crude feed stocks
- Changing product yields
- Debottlenecking
- Reducing atmospheric emissions
- Less total operating costs
- Low capital expenditure
- Minimum structural modifications
- Large profit

Preferably with:
New Retrofit Approach

Base Case Data → Development of Rigorous Model → Validation of Model → Optimisation → Structural Modifications

Structural Modifications:
- Pre-flash
- Pre-Fractionator
- New Pump-Around
- Heat transfer enhancement
Optimisation can be for minimum energy by maximising energy recovery using Pinch Analysis or total cost or emissions cut.
Case Study (MIDOR)

- 100,000 bbl/d of crude oil (50% Arabian light and 50% Arabian heavy)
- 5 products: Vapours (Naphtha), kerosene, light diesel (LD), heavy diesel (HD), and residue (RES)

Over head vapour flow (kg/hr)	125,000.23
Kerosene flow (t/hr)	49.2
LD flow (t/hr)	106.3
HD flow (t/hr)	11.4
Residue flow (t/hr)	293.5
Duty of furnace (MMkcal/hr)	55.7 (≈65 MW)
Energy Cost ($/yr)	3,330,245
Existing HEN

2nd preheat train

130 °C

1st preheat train

20 °C

Crude oil

Vacum residue

HVGO

PA around 2

LD

Kerosene

PA around 1

Reflux

LVGO

HD

366 °C

264 °C
Case Study Objectives

- Development of a rigorous process design model for the existing refinery distillation plant
- Increasing the energy efficiency
- Optimisation of the current operating conditions to minimise energy consumption and total costs
-
-capacity.....
-different feed stocks...
Results and Discussion
1- Rigorous Process Design Model
Validation of The Base Case

<table>
<thead>
<tr>
<th>Parameter of comparison</th>
<th>MIDOR data</th>
<th>HYSIS results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inlet crude flow (t/hr)</td>
<td>57,399</td>
<td>57,600</td>
</tr>
<tr>
<td>Crude temperature before furnace (°C)</td>
<td>264</td>
<td>265</td>
</tr>
<tr>
<td>Crude temperature after furnace (°C)</td>
<td>365</td>
<td>365</td>
</tr>
<tr>
<td>Duty of furnace (MMKcal/hr)</td>
<td>55.7</td>
<td>55.25</td>
</tr>
<tr>
<td>Reflux ratio</td>
<td>0.80</td>
<td>0.85</td>
</tr>
<tr>
<td>Condenser duty (MMkcal/hr)</td>
<td>15</td>
<td>16</td>
</tr>
<tr>
<td>First pump around flow (m³/h)</td>
<td>570.1</td>
<td>570.1</td>
</tr>
<tr>
<td>Second pump around flow (m³/h)</td>
<td>505.30</td>
<td>505.33</td>
</tr>
</tbody>
</table>
Validation of Rigorous Model

Flow rates (kg/hr)

- Over head vapour
- Kerosene
- LD
- HD
- Residue

MIDOR
HYSIS
2- Column Optimisations

Changing the lower pump-around flow rate

- Temperature of crude oil before furnace increased from 264 to 271 °C
- Duty of furnace decreased from 55.25 MMkcal/hr to 47.76 MMkcal/hr,
- % Reduction in energy = 13.55 %.

PA flow rate vs Qh min

- Optimum PA flow rate is 540 m³/hr
- Fixed column specifications
3- HEN Optimisation

- By adding additional area of \textbf{600 m}^3 which will cost \textbf{86,085 $}
- The crude oil exits from the last heat exchanger at \textbf{274 °C} instead of \textbf{264 °C}
- The duty of the furnace decreased from \textbf{55.25 MMkcal/hr} to \textbf{46.7 MMkcal/hr},
- The reduction % of energy equals \textbf{15.4 %}

<table>
<thead>
<tr>
<th>Exchanger</th>
<th>Actual area</th>
<th>Modified area</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>m(^2)</td>
<td>m(^2)</td>
</tr>
<tr>
<td>1</td>
<td>420</td>
<td>773.8</td>
</tr>
<tr>
<td>2</td>
<td>480</td>
<td>254.5</td>
</tr>
<tr>
<td>3</td>
<td>1616</td>
<td>872.2</td>
</tr>
<tr>
<td>4</td>
<td>170</td>
<td>359.5</td>
</tr>
<tr>
<td>5</td>
<td>429</td>
<td>240.8</td>
</tr>
<tr>
<td>6</td>
<td>429</td>
<td>485</td>
</tr>
<tr>
<td>7</td>
<td>600</td>
<td>55.3</td>
</tr>
<tr>
<td>8</td>
<td>1456</td>
<td>0.9</td>
</tr>
<tr>
<td>9</td>
<td>1436</td>
<td>330.8</td>
</tr>
<tr>
<td>10</td>
<td>1152</td>
<td>438.9</td>
</tr>
<tr>
<td>11</td>
<td>1708</td>
<td>669.5</td>
</tr>
</tbody>
</table>
New Exchanger Network (HEN)

Crude oil

1st preheat train

2nd preheat train

366 °C

274 °C

142 °C

20 °C

Vacuum residue

HVGO

PA around 2

LD

Kerosene

PA around 1

Reflux

LVGO

HD

Cooler

Additional area
4- Simultaneous Optimisation in both Column and HEN

- By simultaneously applying both column and HEN optimisations.
- The temperature of crude oil before the furnace increased to be $278.3 \, ^\circ C$ instead of $264 \, ^\circ C$.
- The duty of the furnace decreased from $55.25 \, \text{MMkcal/hr}$ to $44.98 \, \text{MMkcal/hr}$.
- The reduction % of energy equals 18.58%.
5- Using Pre-flash before Furnace

- Furnace duty: 55.25 to 30.47 MMkcal/hr
- % Reduction = 44.8%
- Due to removal of relatively large amount of vapour from furnace (vap. fr. = 0.437)
Results Summary

<table>
<thead>
<tr>
<th>parameter</th>
<th>Base Case</th>
<th>Column Optimisation</th>
<th>HEN Optimisation</th>
<th>Simultaneous Optimisation</th>
<th>Pre-flash</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temp. before furnace (°C)</td>
<td>264</td>
<td>271</td>
<td>274</td>
<td>278.3</td>
<td>264</td>
</tr>
<tr>
<td>Duty of furnace (MMkcal/hr)</td>
<td>55.70</td>
<td>47.76</td>
<td>46.70</td>
<td>44.98</td>
<td>30.47</td>
</tr>
<tr>
<td>% Reduction in energy demand</td>
<td>13.6</td>
<td>15.4</td>
<td>18.6</td>
<td>44.8</td>
<td></td>
</tr>
<tr>
<td>Additional capital cost ($)</td>
<td>69,642</td>
<td>111,910</td>
<td>161,005</td>
<td>72,290</td>
<td></td>
</tr>
<tr>
<td>Energy saving (fuel cost, $/yr)</td>
<td>451,624</td>
<td>513,285</td>
<td>619,275</td>
<td>1,493,194</td>
<td></td>
</tr>
<tr>
<td>Pay back time (year)</td>
<td>0.15</td>
<td>0.22</td>
<td>0.26</td>
<td>0.05</td>
<td></td>
</tr>
</tbody>
</table>
Conclusion and Future Work

- New retrofit approach is applicable to existing refinery distillation units
- Rigorous process models are of great significance in retrofit studies
- Energy can be reduced substantially with optimisation
- Column and HEN can be dealt with simultaneously
- Structural modifications improve energy efficiency further
- Energy and fuel costs can be reduced by up to 44%

- Automation of optimisation algorithm