MANUAL OF SUMMER TRAINING

&

INDUSTRIAL COLLABORATION

Dr. Sayed Akl
Mechanical Department

Eng. Mostafa Foley
Training Engineer

The British University in Egypt
Engineering Department
Copyright © 2015
This manual provides a reference guideline for students to identify what is expected of them during their internship sessions. The document outlines the details of the internship program and specifies the expected student responsibilities during their summer internships. It also provides a summary of major issues and/or activities that should be considered by the students. Finally, the document outlines the Report and Presentation requirements for the students. The manual reflects the state of knowledge of BUE trainees at the end of each year of study and specifies the potential tasks they could successfully perform according to their level of knowledge.

Another objective of this Manual is to demonstrate the university regulations regarding the organization of industrial collaboration for field visits, research activities and students’ summer internships. It also covers the departmental tasks for both Training section and Academic department.
TABLE OF CONTENTS

CHAPTER 1 (SUMMER TRAINING)
1.1 Introduction ... 1
1.2 Internship Program Structure 2
1.3 Student Responsibilities at Internship Sessions 2
1.4 Major Issues to consider 3
1.5 Final Report & Presentations 4

CHAPTER 2 (TRAINING PROFILE)
2.1 Introduction ... 5
2.2 Training profile for Architecture Department 7
2.3 Training profile for Civil Department 9
2.4 Training profile for Electrical Department 11
2.5 Training profile for Mechanical Department 13
2.6 Training profile for Chemical Department 15
2.7 Training profile for Petroleum & Gas Department 16

CHAPTER 3 (TRAINING MODULE SPECIFICATION)
3.1 Introduction ... 17
3.2 Year 2 Module Specification 18
3.3 Year 3 Module Specification 20

CHAPTER 4 (TRAINING TASKS & PROCEDURES)
4.1 Introduction ... 22
4.2 Training section 23
4.3 Academic Department 24

CHAPTER 5 (INDUSTRIAL COLLABORATION)
5.1 Introduction ... 25
5.2 Industrial and research inputs and their significance 26

CHAPTER 6 (TRAINING TEMPLATES)
6.1 Introduction ... 27
6.2 Evaluation Criteria for the Training Report 28
6.3 Evaluation Criteria for the Presentation 29
6.4 Company Report 30
6.5 Log-Book Summary Template 31

CHAPTER 7 (EXAMPLES OF TRAINING SITES)
7.1 Introduction ... 32
7.2 Samples of Training Sites inside Egypt 33
7.3 Samples of Training Sites inside Egypt 34

References ... 35
1.1 Introduction

In order to provide students with the necessary professional skills, the BUE has identified the need for industrial interaction for the students of today who would graduate to be the workforce of tomorrow. Thus, the Faculty of Engineering requires its students to attend a compulsory training program twice along their five years of study. Achieving that objective requires the organization and coordination with a wide range of industrial contacts that are willing to provide that opportunity for the students.
1.2 Internship Programme Structure

Engineering students at BUE are required to spend an average of 300 training hours/year. Industrial Internships are required in the summer of year 2 and year 3 of their degree program. Industrial internships are designed to provide an opportunity for the students to interact with real world problems and implement any taught procedures and/or activities. The students are prepared to perform specific tasks according to their year of study, as indicated in the upcoming chapters. Students shall be allocated proper training venues as a result of any of the following:

- Internship fairs held at BUE.
- Industrial contacts established by academic staff at their degree program.
- Industrial liaison committee at the faculty of engineering
- Any other personal contacts.

1.3 Student Responsibilities at Internship Sessions

- BUE students shall be treated as on the job trainees whereby specific tasks shall be assigned to them as appropriate to their level of knowledge as indicated in the training profile.
- It is the sole responsibility of students to seek knowledge and understanding of all matters underpinning their assigned tasks.
- Students shall collect complete information about the following as appropriate to their training venue:
 - Nature and type of industrial facility
 - Size of industrial facility
 - Market share
 - Activities of industrial facility
 - Current and/or prospective partnerships
1.4 Major Issues to consider

The following outlines the most important generic issues to consider and look for while conducting the summer internships. Further detailed description shall be provided by respective degree programs.

- Location and Description of industrial facility
- Company Profile
- Complete set of Technical datasheets covering the full range of products and/or services
- Proper specifications and technical procedures for performing all contracted and/or commissioned work
- Types of raw materials used, including unit prices, storage & procurement procedures
- Role of technical office in industrial facility
- Tasks commissioned to the technical office
- Procedures used in analyzing related systems
- Learn and employ any software packages and/or tools which are employed by the technical office
- Identify proper procedures for requesting and performing all types of changes
- Identify any discrepancies between design and analysis methods covered in theory and practical considerations and procedures that might be employed in practice
- Learn & practice industrial detailing procedures
- Review all necessary steps for approval of design documents and/or drawings
- Review and practice necessary procedures for approving completed works.
- Identify proper procedures for creating bill of quantities.
- Review industrial safety procedures and whether these are properly implemented
- Review quality assurance regulations and procedures which are implemented in the facility.
1.5 Final Report & Presentations

- Students shall prepare a technical report at the end of their internship program, summarizing all the works and/or tasks performed and analyzed during the internship. The report shall include copies of original project documents and drawings where possible.

- A power point presentation summarizing all performed work and activities, supported by photos and pictures of the actual industrial facility and/or simulations of work done at the technical office, is also required.

- Students shall present their reports and conduct their presentations, in front of a panel at BUE. Students shall be ready to respond to any requests for clarifications and/or questions raised by the examining panel.

- Summer internships are Pass/Fail modules, and carry no credit weight; however, students will not graduate and attain their degrees without successfully satisfying the examining committee of their level of effort and amount of attained technical and/or practical skills and information during their internship positions.
2.1 Introduction

Architecture Engineering at BUE graduates a general architectural engineer with a specialty in one of the major areas of architecture engineering, i.e., architectural design, building construction and technology, environmental sciences and building services, urban design and planning and construction management. The department requires its students to register in an industrial training program in the summers of year 2 and year 3 for a duration of about six weeks of training/summer. Year 1 students are encouraged to search for training opportunities during the summer even though it is not compulsory for them to do so.

Civil Engineering at BUE graduates a general engineer with a specialty in one of the major areas of civil engineering, i.e., structural, transportation, environmental, water resources and construction management. The department requires its students to register in an industrial training program in the summers of year 2 and year 3 for a duration of about six weeks of training/summer. Year 1 students are encouraged to seek training opportunities during the summer even though it is not compulsory for them to do so.

Electrical Engineering graduates study a variety of courses that enable them to work in a number of fields related to electronic design, digital communication systems, RF and microwave wireless systems, optical systems, communication and computer networks, design automation, computer engineering, control system and optimization.
Mechanical Engineering graduates study a variety of courses that enable them to work in a number of fields related to mechanical engineering, namely and not limited to: design, management and industrial engineering, Mechatronics, production, materials engineering, power engineering, and aeronautics and aerospace engineering. The department requires its students to register in an industrial training program in the summers of year 2 and year 3 for duration of six weeks of training/summer. Year 1 students are encouraged to seek training opportunities during the summer even though it is not compulsory for them to do so.

Chemical department requires its students to register in an industrial training program in the summers of year 2 and year 3 for duration of six weeks of training/summer. Year 1 students are encouraged to seek training opportunities during the summer even though it is not compulsory for them to do so.

Petroleum Engineering and Gas technology at BUE graduates a general engineer with a specialty in the upstream industry focusing on the exploration and production activities areas. The department requires its students to register in an industrial training program in the summers of year 2 and year 3 for duration of about three- four weeks of training/summer. Year 1 students are encouraged to seek training opportunities during the summer even though it is not compulsory for them to do so.
2.2 Training Profile of Architecture Department

Years 2 & 3 students are requested to present the following at the end of each training program:

1- log report

2- formal report (5000 words) describing

3- an assessment of overall performance by company staff

4- a 10-minutes oral presentation in front of a panel of academic staff members, which will decide if the students shall pass or fail.

Students cannot graduate at BUE without passing two training sessions.

The following outlines the expected knowledge and required tasks to be assigned to our students:

Year 1 Students (Optional)

The students have basic knowledge in:

- Architectural drawing (manual and CAD) and design, basic representation techniques, basic building construction methods, construction materials, surveying and basic reinforced concrete and steel design methods.

They may be assigned tasks in:

- Basic architectural drawing and representation techniques, practice reading architectural and construction drawings, supervise and check formwork construction and strengthening, monitor and supervise concrete pouring.

Year 2 Students (Obligatory)

The students have knowledge in:

- Architectural design, building construction, basic management skills, quantity surveying, building services and technical installation and preparing working drawings.

They may be assigned tasks in:

- Quantity surveying, supervising and checking of architectural finishing, participate in preparation of working drawings and design representation.
Year 3 Students (Obligatory)

The students have knowledge in:

- Architectural design and representation, 3D CAD modeling, working drawings, advanced construction technology, advanced building services, construction project management and construction economics.

They may be assigned tasks in:

- Design office to participate in architectural drawing and representation, creating 2D & 3D AutoCAD drawings and details, construction documents, project specifications, bidding procedures.
2.3 Training Profile of Civil Department

Years 2 & 3 students are required to present a technical report at the end of each training session and conduct a presentation in front of a panel of academic staff members, which will decide if the students shall pass or fail. Students cannot graduate at BUE without passing two training sessions.

The following outlines the expected knowledge and required tasks to be assigned to our students:

Year 1 Students (Optional)

The students have basic knowledge in:

- Surveying Techniques, Material Properties, Structural Analysis, Construction Methods, Geotechnics & Geology and Civil Engineering Drawing.

They may be assigned tasks in:

- Basic Surveying, Quantity Surveying, practice reading construction drawings, supervise and check formwork construction and strengthening, monitor and supervise concrete pouring.

Year 2 Students (Obligatory)

The students have knowledge in:

They may be assigned tasks in:

- Advanced Surveying, Quantity Surveying, supervising and checking of Reinforcement of Slabs, Beams and Columns, monitoring Concrete Sampling, relate Reinforcement to Practical Detailing, Construction Planning.

Year 3 Students (Obligatory)

The students have knowledge in:

They may be assigned tasks in:

- Design office to check design calculations, calculation sheets, creating AutoCAD drawings and details, construction documents, project specifications, bidding procedures.
2.4 Training Profile of Electrical Department

Years 2 & 3 students are required to present a technical report at the end of each training session and conduct a presentation in front of a panel of academic staff members, which will decide if the students shall pass or fail. Students cannot graduate at BUE without passing two training sessions.

The following outlines the expected knowledge and required tasks to be assigned to our students:

Year 1 Students (Optional)

The students have basic knowledge in:

- Basic electric circuits, analogue electronic components and circuits, logic circuits, data structure, basics of Java programming, and electromagnetism

They may be assigned tasks in:

- Basic design of electric and electronic circuits.

Year 2 Students (Compulsory)

The students have knowledge in:

- Analogue and digital communication, advanced analogue electronic circuits, microcontroller-based systems, electrical power, fundamentals of electronic materials and properties, computer architecture, control system design and analysis, engineering project management and system theory.

They may be assigned tasks in:

- Microcontroller-based circuits and programming, implementation of logic design using VHDL, design of FPGA-based systems, testing of analogue communication systems, advanced analogue electronic circuits.

Year 3 Students (Compulsory)

The students have knowledge in:

- Advanced digital communication systems, digital control, software engineering, electronic measurement and instrumentation with emphasis on automated and computer-based measurement system, advanced semiconductor devices and modeling techniques.
They may be assigned tasks in:

- Design, testing and implementation of digital communication systems, PC-based measurement techniques, use of semiconductor models in advanced simulation tools, design of digital control system.
2.5 Training Profile of Mechanical Department

The department requires its students to register in an industrial training program in the summers of year 2 and year 3 for duration of six weeks of training/summer. Year 1 students are encouraged to seek training opportunities during the summer even though it is not compulsory for them to do so.

Students are required to present a technical report at the end of their training program and conduct a presentation in front of a panel of academic staff members, which will decide if the students shall pass or fail. Students cannot graduate at BUE without passing two training sessions.

The following outlines the expected knowledge and required tasks to be assigned to our students:

Year 1 Students (Optional)

The students have basic knowledge in:

- Material Properties, Structural Analysis, Mechanical Engineering Drawing, and basic tooling and manufacturing methods.

They may be assigned tasks in:

- Basic design and manufacturing engineering activities.

Year 2 Students (Compulsory)

The students have knowledge in:

- Basic sciences, advanced structure analysis, machine element design, advanced drawing, materials properties and technology, manufacturing methods by casting and metal forming, and thermal and fluid flow relations.

They may be assigned tasks in:

- Reporting data on production lines, simple design tasks for production lines, materials testing, and manual or computer drawing activities.

Year 3 Students (Compulsory)

The students have knowledge in:

- Product design, measurements and tooling, material characterization by DT and NDT methods, machining, welding, modern control systems in industry, operations management, advanced fluid mechanics and thermodynamics of systems.
They may be assigned tasks in:

- Design office to check design calculations, calculation sheets, creating AutoCAD drawings and details, welding shops, NDT labs, tasks related to production management, operation and maintenance of modern industrial control systems, operation and optimization of HVAC and fluid machinery.
2.6 Training Profile of Chemical Engineering Department

Years 2 & 3 students are required to present a technical report at the end of each training session and conduct a presentation in front of a panel of academic staff members, which will decide if the students shall pass or fail. Students cannot graduate at BUE without passing two training sessions.

The following outlines the expected knowledge and required tasks to be assigned to our students:

Year 1 Students (Optional)
The students have basic knowledge in:

- Engineering sciences, computer programming, chemistry, principles of material and energy balances, and thermodynamics

They may be assigned tasks in:

- Chemical industries or chemical laboratories.

Year 2 Students (Obligatory)
The students have knowledge in:

- Fluid mechanics, heat transfer, Equipment mechanical design, organic and polymer chemistry

They may be assigned tasks in:

- Basic equipment design, chemicals industries, petroleum refineries, water desalination and treatment plants

Year 3 Students (Obligatory)
The students have knowledge in:

- Mass transfer, separation processes, process safety, process simulation, process integration, chemical reactor design, and process control, process economics and management.

They may be assigned tasks in:

- Design offices to perform design and simulation tasks, chemicals industries, petroleum refineries, water desalination and treatment plants with emphasis on advanced topics such as process safety, process control, process management, process integration, equipment design and operation.
2.7 Training Profile of Petroleum & Gas Department

Years 2 & 3 students are required to present a technical report at the end of each training session and conduct a presentation in front of a panel of academic staff members, which will decide if the students shall pass or fail. Students cannot graduate at BUE without passing two training sessions.

The following outlines the expected knowledge and required tasks to be assigned to our students:

Year 1 Students (Optional)

The students have basic knowledge in:

- Engineering sciences, computer programming, petroleum industry and geological principles of petroleum exploration and production.

They may be assigned tasks in:

- Basic E&P petroleum engineering activities.

Year 2 Students (Obligatory)

The students have knowledge in:

- Oil well drilling engineering, surveying techniques, petroleum reservoir properties, project management.

They may be assigned tasks in:

- Drilling engineering, surveying, petroleum reservoir evaluation, machine design, project planning and management.

Year 3 Students (Obligatory)

The students have knowledge in:

- Petroleum production equipment, formation evaluation, reservoir modeling and simulation, corrosion problems, exploration and field development techniques.

They may be assigned tasks in:

- Selection of production tools and equipment, reservoir and formation evaluation, well planning and design, reservoir monitoring, and field development planning.
3.1 Introduction

The aim of this chapter is to specify the module specifications of both Year 2 & Year 3 for all of engineering departments at the British University in Egypt.
3.2 Module Specification for Year 2

[ENGG03103] Industrial Training Placement (1)

<table>
<thead>
<tr>
<th>Module Code: ENGG03103</th>
<th>Title: Industrial Training Placement (1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modular weight: 0</td>
<td>Examination weighting: 0 %</td>
</tr>
<tr>
<td>Prerequisite modules:</td>
<td></td>
</tr>
<tr>
<td>Reassessment: No restrictions</td>
<td></td>
</tr>
<tr>
<td>Internal Examiner/Module Leader:</td>
<td></td>
</tr>
<tr>
<td>Semester taught: Summer of Year 2</td>
<td></td>
</tr>
<tr>
<td>Key words: industrial training, work experience</td>
<td></td>
</tr>
<tr>
<td>Date of latest revision: September 2012</td>
<td></td>
</tr>
</tbody>
</table>

Aims

To enable students to experience real-world engineering by spending an extended period working on a structured industrial placement with a suitable company.

Intended Learning Outcomes

Knowledge and understanding

On completion of this module students should be able to demonstrate knowledge and understanding of:

1. practical technologies in addition to management and business practices relevant to professional engineers;

Subject-specific cognitive skills

On completion of this module students should be able to demonstrate ability in:

2. handling engineering processes and tools in addition to technical risk and safety issues;

Subject-specific practical skills

On completion of this module students should be able to demonstrate ability in:

3. hands-on experience of engineering tools and machinery and/or development of a project plan, identifying the resources required and timescales involved;

Key transferable skills

On completion of this module students should be able to demonstrate ability in:

4. effective communication through written, graphical, interpersonal, and presentation skills;

Context

A two-day health and safety workshop will be conducted, on campus, before the start of the training programme. Attending the workshop is an integral component of the internship programme. A training programme listing specific objectives relevant to the student's and the company's needs and aspirations will be agreed between the BUE and the company's Training Officer. The training programme will encompass as broad a range of activities as possible with the student taking a gradually increasing responsibility for his/her own work. A training profile summarizing students current state of knowledge and potential tasks they could perform is provided to all training companies to help in defining the personalized training programme.
Methods of Learning, Teaching and Assessment
Total student effort for the module: 200 hours on average.

Teaching & Learning:
1. There are no mandatory formal teaching arrangements for this module: students are expected to demonstrate quantifiable understanding and personal development through the medium of work experience. Students’ effort is broken down to 140 hours of on-site training in addition to 60 hours of independent reading, logbook maintenance and report writing. This method informs learning outcomes 1, 2, 3, 4.

Assessment:
1. This module is assessed on a PASS/FAIL basis. Assessment will be based on the following: a log book (30%), a formal report (3000 words) (30%), an assessment of overall performance by company staff (10%) and a 10 minute oral presentation to a joint University/Company review panel (30%). All assessments shall be submitted according to the current coursework submission schedule. This method assesses learning outcomes 1, 2, 3, 4.

Feedback given to students in response to assessed work
Feedback presented as part of ongoing discussions;

Developmental feedback generated through teaching activities
Individual developmental feedback provided during field work activities (as required).
Feedback on drafts / work plans;

Reading List
• Relevant Health & Safety Executive (HSE) publications
• Relevant Occupational Safety & Health Administration (OSHA) publications
• BUE training guidelines for engineering students
3.3 Module Specification for Year 3

[ENGG07H03] Industrial Training Placement (2)

<table>
<thead>
<tr>
<th>Module Code: ENGG07H03</th>
<th>Title: Industrial Training Placement (2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modular weight: 0</td>
<td>Examination weighting: 0 %</td>
</tr>
<tr>
<td>Prerequisite modules:</td>
<td></td>
</tr>
<tr>
<td>Reassessment: No restrictions.</td>
<td></td>
</tr>
<tr>
<td>Internal Examiner/Module Leader:</td>
<td></td>
</tr>
<tr>
<td>Semester taught: Summer of Year 3</td>
<td></td>
</tr>
<tr>
<td>Key words: industrial training, work experience.</td>
<td></td>
</tr>
<tr>
<td>Date of latest revision: August 2011</td>
<td></td>
</tr>
</tbody>
</table>

Aims

To enable students to experience real-world engineering by spending an extended period working on a structured industrial placement with a suitable company. This module specification builds on skills developed in the first placement ENGG03103. The student is expected, at this level, to have developed significantly since their last industrial placement. Thus, they will be expected to perform at a higher level. This will be reflected in their role and the assessment of their work.

Intended Learning Outcomes

Knowledge and understanding

On completion of this module students should be able to demonstrate knowledge and understanding of:

1. practical technologies in addition to management and business practices relevant to professional engineers;

Subject-specific cognitive skills

On completion of this module students should be able to demonstrate ability in:

2. design concepts related to engineering operations considering technical risk and safety issues;

Subject-specific practical skills

On completion of this module students should be able to demonstrate ability in:

3. hands on experience of engineering tools and machinery and/or development of a project plan, identifying the resources required and timescales involved;

Key transferrable skills

On completion of this module students should be able to demonstrate ability in:

4. effective communication through written, graphical, interpersonal, and presentation skills and time and resources management in developing plans that meet deadlines;

Context

At this stage, students are encouraged to engage in a training exercise at a design office. The training programme will encompass as broad a range of activities as possible with the student taking a gradually increasing responsibility for his/her own work. A training profile summarizing students current state of knowledge and potential tasks they could perform is provided to all training companies to help in defining the personalized training programme.
Methods of Learning, Teaching and Assessment

Total student effort for the module: 200 hours on average.

Teaching & Learning:

1. There are no mandatory formal teaching arrangements for this module: students are expected to demonstrate quantifiable understanding and personal development through the medium of work experience. Students’ effort is broken down to 140 hours of on-site training in addition to 60 hours of independent reading, logbook maintenance and report writing. This method informs learning outcomes 1, 2, 3, 4.

Assessment:

1. This module is assessed on a PASS/FAIL basis. Assessment will be based on the following: a log book (30%), a formal report (5000 words) (30%), an assessment of overall performance by company staff (10%) and a 10 minute oral presentation to a joint University/Company review panel (30%). This method assesses learning outcomes 1, 2, 3, 4.

Feedback given to students in response to assessed work

Feedback discussed as part of ongoing discussions;

Developmental feedback generated through teaching activities

Individual developmental feedback provided during field work activities (as required).

Feedback on drafts / work plans;

Reading List

- Relevant Health & Safety Executive (HSE) publications
- Relevant Occupational Safety & Health Administration (OSHA) publications
- BUE training guidelines for engineering students
4.1 Introduction

The tasks and procedures in this chapter emphasize the role of both training section and academic departments for fulfilling the targets and intended learning outputs of summer training.
4.1 Training section

<table>
<thead>
<tr>
<th>No.</th>
<th>Procedure</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>To prepare data base for the student to be trained</td>
</tr>
<tr>
<td>2</td>
<td>To search for providing training sites according to the different specializations, to fix the student numbers for each site and submit these data to be approved by academic departments.</td>
</tr>
<tr>
<td>3</td>
<td>Upon the approval of academic departments, the students to be distributed to cover the different sites taking in consideration the students who can provide the training sites by themselves.</td>
</tr>
<tr>
<td>4</td>
<td>To prepare a proposal for the training plan including the students and sites. This plan to be submitted for approval.</td>
</tr>
<tr>
<td>5</td>
<td>To coordinate with different sites so that the students go to their training in the due time. All needed administrative work should be done before.</td>
</tr>
<tr>
<td>6</td>
<td>Current situation of the training implementation is to be submitted periodically to the academic departments by the end of each month. A final report is to be submitted to the departments by the end of training.</td>
</tr>
<tr>
<td>7</td>
<td>To survey the students who do not fulfill their training and to follow up with them to carry out their training, the departments should be informed.</td>
</tr>
</tbody>
</table>
4.2 Academic Department

<table>
<thead>
<tr>
<th>No.</th>
<th>Procedure</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>To hold a meeting with the students to get them well aware with the summer training.</td>
</tr>
<tr>
<td>2</td>
<td>To search for providing training sites and to conduct them to the training section.</td>
</tr>
<tr>
<td>3</td>
<td>To study and investigate the recommended training sites as well as the training plan proposal prior approval.</td>
</tr>
<tr>
<td>4</td>
<td>To technically follow-up the students during implementing their training.</td>
</tr>
<tr>
<td>5</td>
<td>To prepare the module file for each year.</td>
</tr>
<tr>
<td>6</td>
<td>To implement the required assessment for the training process including the technical reports as well as the site reports.</td>
</tr>
<tr>
<td>7</td>
<td>To prepare the assessment results before the dead line of mark input.</td>
</tr>
</tbody>
</table>
5.1 Introduction

To support and enrich the internship program, an industrial collaboration is highly essential. A faculty coordinator is assigned for organizing industrial collaboration for students’ summer internship and both field visits and research activities. In addition to that, directional field trips are carried out for the 1st and 2nd year. These visits familiarize the students with the practical aspects of their courses and thus helping them to acquire higher standards and fulfilling degrees with better results.

As the industrial training requirement is an integral graduation requirement, the training modules are assessed through a report, presentation, and a log book in which the students emphasize their achievements during their training assignment. A company report about the students that are trained in this company can help the academic staff to monitor the performance of students. Moreover, unplanned visits of an academic staff member relevant to the area of training can be performed to monitor/control the performance of students.

The broad spectrum of industrial placement results in a graduated profile recognized in both local and international market job place.
5.2 Industrial and research inputs and their significance

The industrial and research input in learning and teaching is assured through a number of measures which represent the job description of industrial collaboration and could be summarized as follows:

1. Developing a departmental research strategy such that approved research projects should comply with the strategy. This strategy is as taken from the staff meetings: “Final year research projects should fit within our current research strategy with priorities in the following order: renewable energy, industrially or otherwise funded research projects, ongoing research projects by staff members who are at final stages of completion and leading to publications, points brought by the students themselves after agreement with a staff member”.

2. Establishing grounds for successful industrial collaboration and establishing multiple avenues to collaboration including recruiting selective academic staff from industry, inviting industrial personal to the University for Invited Lectures and including them in students’ research projects.

3. Establishing collaborative research processes with other research organizations by the same methods mentioned in 2.

4. Planning to establish a technological center for developed industries through collaboration with industrial sites to provide an industrial environment where the local and international industry professionals, academic staff, researchers will interact and work mutually.

5. Accurate and wide choice of approved internship facilities which prepare the graduates for the real industrial life in different aspects.

7. Opening channels with Industrial Corporation for training of their employees on the latest technology available at the BUE.

8. Providing the university with a list of enterprises who can be invited to job fairs which are organized annually by the university.

The previous measures help to:

a. Familiarize students with the real and up-dated needs of industry.
b. Build staff and students capacity to self-evaluate the program.c. Bring students to the appropriate level expected from their targeted destinations after graduation.d. Build strong bonds between students and leading international companies in all different industrial fields through providing latest technologies.e. Produce competitive graduates to the local and international job opportunities capable of proving themselves when introduced through job fairs.
6.1 Introduction

The Aim of this chapter is to demonstrate the marking criteria of the Training Department for both of the training report and the presentation. It also shows the template of the Company Report and the Logbook Summary.
6.2 Evaluation Criteria for the Training Report

Training Evaluation Criteria

<table>
<thead>
<tr>
<th>YEAR 2</th>
<th>YEAR 3</th>
<th>NAME:</th>
<th>ID:</th>
</tr>
</thead>
<tbody>
<tr>
<td>TRAINING TITLE:</td>
<td>Submission Date:</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Key of the Evaluation Criteria for the Training Report

<table>
<thead>
<tr>
<th></th>
<th>Excellent</th>
<th>Very Good</th>
<th>Good</th>
<th>Fail</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Presence and adequacy of title page</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>2.</td>
<td>Presence and adequacy of Acknowledgement</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>3.</td>
<td>Presence and adequacy of Table of Contents</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>4.</td>
<td>Presence and adequacy of List of Tables and List of Figures</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>5.</td>
<td>Presence and adequacy of Abstract or Executive Summary</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>6.</td>
<td>Presence of an adequate Introduction, Methodology, Results, Analysis and Discussion</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>7.</td>
<td>Presence of an adequate Conclusion</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>8.</td>
<td>Presence of correctly written References</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
</tr>
</tbody>
</table>
6.3 Evaluation Criteria for the Presentation

Key of the Evaluation Criteria for the Presentation

<table>
<thead>
<tr>
<th>Attendance</th>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>___</td>
<td>___</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Excellent</th>
<th>Very Good</th>
<th>Good</th>
<th>Fail</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. The student had a formal appearance</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☒</td>
</tr>
<tr>
<td>2. The Presentation contained an Outline</td>
<td>☒</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>3. Presence of supporting multimedia (Videos, Photos,....)</td>
<td>☐</td>
<td>☐</td>
<td>☒</td>
<td>☐</td>
</tr>
<tr>
<td>4. Student’s Body Language and Eye Contact</td>
<td>☒</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>5. Pace of the presentation and the transitions between different points</td>
<td>☐</td>
<td>☐</td>
<td>☒</td>
<td>☐</td>
</tr>
<tr>
<td>6. The student respected time allowed for his presentation</td>
<td>☐</td>
<td>☒</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>7. The student was not reading from the screen during his presentation</td>
<td>☐</td>
<td>☒</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>8. The Student answered adequately in the discussion</td>
<td>☐</td>
<td>☐</td>
<td>☒</td>
<td>☐</td>
</tr>
</tbody>
</table>
Company Report

<table>
<thead>
<tr>
<th>COMPANY NAME:</th>
<th>TRAINING NAME:</th>
</tr>
</thead>
<tbody>
<tr>
<td>STUDENT NAME:</td>
<td>DURATION DATE: FROM / TO /</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Excellent</th>
<th>Very Good</th>
<th>Good</th>
<th>Fail</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Attendance</td>
<td>[]</td>
<td>[]</td>
<td>[]</td>
<td>[]</td>
</tr>
<tr>
<td>2. Performance</td>
<td>[]</td>
<td>[]</td>
<td>[]</td>
<td>[]</td>
</tr>
<tr>
<td>3. Teamwork</td>
<td>[]</td>
<td>[]</td>
<td>[]</td>
<td>[]</td>
</tr>
<tr>
<td>4. Overall knowledge of the topics covered during the training</td>
<td>[]</td>
<td>[]</td>
<td>[]</td>
<td>[]</td>
</tr>
<tr>
<td>5. Attitude</td>
<td>[]</td>
<td>[]</td>
<td>[]</td>
<td>[]</td>
</tr>
</tbody>
</table>

Overall Comments:

Signature:

Summer Training | Evaluation Criteria
6.5 Logbook Summary Template

Logbook Summary

DATE: / / TRAINING TITLE:
7.1 Introduction

The Aim of this chapter is to show samples of the different training sites that are available for the BUE students inside and outside Egypt. These training sites offered by the BUE provide the students with a wide range of Industrial Varieties that meet their interests and ensure they get the highest level of expertise during their summer training.
7.2 Samples of Training Sites inside Egypt

Egypt Air

Egypt Air is the flag carrier airline of Egypt and a member of Star Alliance. It is considered to be the largest airline in Africa. The headquarters of this airline is located in Cairo International Airport. Almost more than 75 destinations in the Middle East, Europe, Africa, Asia, and the Americas are being scheduled for passenger and freight services.

The Egypt Air company is divided into several divisions that its aim is to provide several essential services for flight. One of these divisions is the “Egypt Air Maintenance & Engineering” division which is responsible for the maintenance of the fleet of planes of Egypt Air and any other vehicle or machine associated.

“Egypt Air Maintenance & Engineering” division consists of 4 main sections which are:

1-Hanger 8000: For Airbus planes
2-Hanger 7000: For Boeing Planes
3-Engine Maintenance
4-Units Maintenance

Oriental Weavers

Located in Egypt, Oriental Weavers is considered to be the largest machine made rug manufacturer in the Middle East. Oriental Weavers products are known globally for their high quality fibers, fashionable designs, distinctive characteristics, innovative weaving techniques which will provide the trainees with a high standard of experience.

Schneider Electric

In 1980 Schneider Electric in Egypt was founded and since then it offers a wide range of products and services in Egypt and North East Africa with its expertise in automation control, energy solutions, power components & conservation, energy management and recently renewable energies such as wind and solar.
7.2 Samples of Training Sites outside Egypt

FARO (Germany)

FARO has three headquarters. The American headquarter in Florida (USA), The European headquarter in Korntal-Münchingen (Germany), and the Asian headquarter in Singapore. FARO maintains other branch offices in Brazil, Canada, China, France, India, Italy, Japan, Korea, the Netherlands, Poland, Spain, Switzerland, Turkey and the UK.

FARO develops and markets computer-aided measurement systems and software worldwide. The portable coordinate measuring devices from FARO, together with their industry-specific software solutions, allow high-precision 3D measurements and 3D comparisons of parts and complex systems directly within assembly and production processes. FARO measurement systems are used anywhere where the most accurate measurements are necessary. They are used for inspecting components and component assemblies, production planning and inventory documentation.
References

- BUE Summer Training 2015 http://www.bue.edu.eg/index.php/faculties-summer-training
 1st January 2015

- Egypt Air Lines, About Egypt
 Air 2015 http://www.egyptair.com/English/Pages/aboutegyptair.aspx
 1st January 2015

- Schneider Electric, Products and Services – Schneider 2015
 http://www.schneider-electric.com/site/home/index.cfm/eg/
 1st January 2015

- Power Seller USA, Oriental Weavers Area Rugs
 1st January 2015

- FARO, About FARO
 1st January 2015